Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The angle dependent transmission of light trapping transparent electrodes is investigated. The electrodes consist of triangular metallic wire arrays embedded in a dielectric cover layer. Normal incidence illumination of the structure produces light trapping via total internal reflection, virtually eliminating all shadowing losses. It is found that varying the external angle of incidence can affect the light trapping efficiency ηLTdue to partial loss of internal reflection and increased interaction with neighboring wires. Despite these effects, a judicious selection of geometry and materials can reduce shadowing losses by more than 85% over a surprisingly large angular range of 120°. It is demonstrated that the angle-averaged shadowing losses in an encapsulated silicon solar cell under illumination with unpolarized light can be reduced by more than a factor of two for incident angles between −60° and +60° off-normal across the entire AM1.5 solar spectrum.more » « less
-
Abstract This work reports the fabrication and characterization of multifunctional, nanostructured passivation layers formed using a self-assembly process that provide both surface passivation and improved light trapping in crystalline silicon photovoltaic (PV) cells. Scalable block copolymer self-assembly and vapor phase infiltration processes are used to form arrays of aluminum oxide nanostructures (Al 2 O 3 ) on crystalline silicon without substrate etching. The Al 2 O 3 nanostructures are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and spectroscopic ellipsometry. Injection-level dependent photoconductance measurements are used to determine the effective carrier lifetime of the samples to confirm the nanostructures successfully passivate the Si surface. Finite element method simulations and reflectance measurement show that the nanostructures increase the internal rear reflectance of the PV cell by suppressing the parasitic optical losses in the metal contact. An optimized morphology of the structures is identified for their potential use in PV cells as multifunctional materials providing surface passivation, photon management, and carrier transport pathways.more » « less
-
The optical and electrical performance of light trapping metallic electrodes is investigated. Reflection losses from metallic contacts are shown to be dramatically reduced compared to standard metallic contacts by leveraging total internal reflection at the surface of an added dielectric cover layer. Triangular wire arrays are shown to exhibit increased performance with increasing size, whereas cylindrical wires continue to exhibit diffractive losses as their size is increased. These trends are successfully correlated with radiation patterns from individual metallic wires. Triangular metallic electrodes with a metal areal coverage of 25% are shown to enable a polarization-averaged transmittance of >90% across the wavelength range 0.46-1.1 µm for an electrode width of 2 µm, with a peak transmission of 97%, a degree of polarization of <0.2%, and a sheet resistance of 0.35 Ω/sq. A new figure of merit is introduced to evaluate the light trapping potential of surface-shaped electrodes.more » « less
An official website of the United States government
